Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model

نویسندگان

  • Karima Relizani
  • Graziella Griffith
  • Lucía Echevarría
  • Faouzi Zarrouki
  • Patricia Facchinetti
  • Cyrille Vaillend
  • Christian Leumann
  • Luis Garcia
  • Aurélie Goyenvalle
چکیده

Antisense oligonucleotides (AONs) hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA) is considered very promising for the treatment of Duchenne muscular dystrophy (DMD), a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between myosin heavy chain fibre type and restoration of dystrophin expression and key components of the dystrophin-associated glycoprotein complex by Tricyclo-DNA mediated exon skipping

Exon skipping mediated by tricyclo-DNA (tc-DNA) antisense oligonucleotides has been shown to induce significant levels of dystrophin restoration in mdx, a mouse model of Duchenne Muscular Dystrophy. This translates into significant improvement in key disease indicators in muscle, cardio-respiratory function, heart and the central nervous system. Here we examine the relationship between muscle f...

متن کامل

Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides

Oligonucleotide therapeutics hold great promise for the treatment of various diseases and the antisense field is constantly gaining interest due to the development of more potent and nuclease resistant chemistries. Despite a rather low success rate with only three antisense drugs being clinically approved, the frontiers of AON therapeutic applications have increased over the past three decades ...

متن کامل

Long-term Exon Skipping Studies With 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models

Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD) is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynami...

متن کامل

Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to...

متن کامل

Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons durin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017